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Abstract
An energy eigenproblem for a relativistic N-electron system confined to the
interior of a finite volume V is considered. The confinement is modelled by
imposing a local impedance boundary condition at a hypersurface enclosing the
hypervolume VN in the configuration space. It is shown that energy eigenvalues
are non-increasing functions of the hypersurface impedance. Variational
principles for energy eigenvalues, admitting the use of trial functions which
do not obey the boundary condition imposed on exact eigenfunctions, are
constructed in a systematic manner. The Dirac–Hartree–Fock method is applied
to derive integro-differential equations and local boundary conditions satisfied
by one-electron spin orbitals from which the best determinantal approximations
to exact eigenfunctions are built. It is proved that the Dirac–Hartree–Fock
estimates of exact energy eigenvalues are also non-increasing functions of the
hypersurface impedance.

PACS numbers: 03.65.Pm, 02.30.Xx

1. Introduction

The recent two decades have seen a growth of interest in the theory of confined many-electron
atomic and molecular systems [1]. Browsing the literature on the subject, one finds that nearly
all relevant papers report results obtained within the framework of non-relativistic quantum
mechanics. The exceptions are recent papers by Connerade et al [2–5]. These authors studied
numerically ground-state properties of many-electron atoms confined in spherical cavities in
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the Dirac–Hartree–Fock (DHF) approach; the confinement was modelled by introducing a
very high, but still finite, repulsive potential barrier into the radial DHF equations.

In this paper we investigate mathematical properties of a model of confinement differing
from the one adopted in [2–5]. Specifically, we consider an energy eigenproblem for a
relativistic N-electron system (e.g., an electronic cloud of an atom or a molecule, or a group
of electrons in a solid) confined to the interior of a finite, in general non-spherical, volume
V ⊂ R

3. The configuration space for this system is the hypervolume VN and the N-electron
Dirac equation describing the system is considered in this hypervolume. To accomplish the
confinement, and to provide the data necessary to set up an energy eigenproblem, we impose
a local boundary condition on solutions to this Dirac equation at a hypersurface enclosing
the hypervolume VN . This boundary condition contains a free real parameter, which may be
identified with the hypersurface impedance, and we show that energy levels of the confined
system are non-increasing functions of this parameter.

In the theory of unconfined relativistic many-electron systems the DHF approximation
has been proved to be extremely useful. Therefore, the idea to apply this approximation to the
model of confinement defined above is very appealing. We show that this idea is realizable but
with much more effort than for unconfined systems. Complications arise from the fact that the
standard variational principle for energy eigenvalues of unconfined systems, from which, after
necessary modifications, unconfined DHF equations for optimal one-electron spin orbitals are
usually derived, presupposes a vanishing boundary condition at infinity and therefore cannot be
simply adapted to the present finite-volume model with the impedance boundary condition. To
avoid this difficulty, we employ the procedure popularized by Gerjuoy et al [6] and construct
two variational principles for energy eigenvalues of the problem at hand. After modifying
these principles, in order to obtain ones suitable for use with the determinantal trial functions
built of orthonormal trial spin orbitals, we derive finite-volume DHF equations obeyed in V by
optimal spin orbitals (these equations appear to be formally identical with the DHF equations
for unconfined systems) and boundary conditions satisfied by these spin orbitals at a surface
enclosing V . Employing properties of solutions to the resulting DHF eigenproblem, we prove
that DHF estimates of energy levels of the confined system possess the same property as exact
total eigenenergies, i.e., are non-increasing functions of the impedance parameter.

2. Definitions and notation

Let V ⊂ R
3 be a finite volume enclosed by a surface S. A position vector, relative to some

reference origin, of a point in the volume V will be denoted by r. If the point is located on the
surface S, its position vector will be marked with ρ. A unit outward vector normal to S at the
point ρ will be denoted by n(ρ).

If φ(r) and φ′(r) are any two sufficiently regular four-component spinor functions, their
scalar products over V and S are defined as

〈φ|φ′〉 ≡
∫
V

d3r φ†(r)φ′(r) (2.1)

and

(φ|φ′) ≡
∮
S

d2ρ φ†(ρ)φ′(ρ), (2.2)

respectively. Here d3r is an infinitesimal volume element of V around the point r, d2ρ is an
infinitesimal scalar surface element of S around the point ρ, while the dagger denotes the
matrix Hermitian conjugation.
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With the volume V ⊂ R
3 one may associate a hypervolume V ⊂ R

3N defined as the
N-fold Cartesian product of V:

V = VN ≡ V1 × · · · × VN, (2.3)

bounded by a hypersurface

S =
N⋃

K=1

SK (2.4)

composed of N geometrically similar hyperfacets, with the Kth hyperfacet defined as

SK = V1 × · · · × VK−1 × SK × VK+1 × · · · × VN (K = 1, 2, . . . , N). (2.5)

A position vector of a point in the hypervolume V will be denoted by r. If the point r lies
on S, we shall denote this using the symbol � instead of r. If we wish to emphasize that the
point � is on the particular hyperfacet SK , we shall indicate this adding the subscript K at �,
i.e., writing �K instead of �. A unit outward vector normal to S at the point � will be denoted
by n(�).

If �(r) and �′(r) are sufficiently regular 4N -component spinor functions defined in V

and on S, their scalar products over V and S are

〈�|�′〉V ≡
∫

V

d3Nr�†(r)�′(r) (2.6)

and

(�|�′)S ≡
∮

S

d3N−1� �†(�)�′(�), (2.7)

respectively. Here d3Nr denotes an infinitesimal element of the hypervolume V around the
point r and d3N−1� is an infinitesimal scalar element of the hypersurface S around the
point �.

3. Model of confinement

Consider a relativistic N-electron system confined in the physical space to an interior of a finite
volume V ⊂ R

3 enclosed by a sufficiently smooth, connected surface S. Then, a configuration
point r of the system is confined to an interior of the finite hypervolume V ⊂ R

3N , defined
in equation (2.3), enclosed by the hypersurface S defined in equations (2.4), (2.5). The
time-independent Dirac equation describing the electrons in a stationary state of total energy
E (including electrons’ rest energies), represented by a 4N -component spinor �(r), is

[Ĥ − E]�(r) = 0 (r ∈ V), (3.1)

with the Hamiltonian

Ĥ =
N∑

K=1

[−ich̄ÆK · ∇K + ßKmc2 + V (rK)] +
1

2

N∑
K,K ′=1
(K �=K ′)

U(rK, rK ′). (3.2)

Here ∇K is the gradient operator with respect to coordinates of the Kth electron, ÆK and ßK

are 4N × 4N matrices defined as the following tensor products:

ÆK = I1 ⊗ · · · ⊗ IK−1 ⊗ αK ⊗ IK+1 ⊗ · · · ⊗ IN, (3.3)

ßK = I1 ⊗ · · · ⊗ IK−1 ⊗ βK ⊗ IK+1 ⊗ · · · ⊗ IN, (3.4)
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with α and β denoting the standard Dirac matrices [7] and I denoting the unit 4 × 4 matrix.
For later convenience, we observe that Hamiltonian (3.2) may be rewritten in the form

Ĥ = −ich̄Æ ·D +
N∑

K=1

[ßKmc2 + V (rK)] +
1

2

N∑
K,K ′=1
(K �=K ′)

U(rK, rK ′), (3.5)

where

D = [∇1, . . . ,∇N ], (3.6)

Æ = [Æ1, . . . , ÆN ]. (3.7)

In equations (3.2) and (3.5), V (rK) and U(rK, rK ′) = U(rK ′ , rK) are real, local, one- and
two-electron potentials, respectively.

We shall model the confinement of the system by imposing the following boundary
condition on �(r) at the hypersurface S:[

iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�(�) = 0 (� ∈ S). (3.8)

(It will be proved in appendix B that both possible choices of superscripts lead to the
same boundary condition.) In equation (3.8), b is a real prescribed constant (hypersurface
impedance), the constants γ (±) are defined as

γ (±) = −(γ (∓))−1 = ±
(

h̄

2mc

)±1

, (3.9)

and ß̂(±) is an operator such that for any 4N -component spinor function �(�) defined on S it
holds

ß̂(±)�(�K) = ß(±)
K �(�K), (3.10)

where

ß(±)
K = I1 ⊗ · · · ⊗ IK−1 ⊗ β

(±)
K ⊗ IK+1 ⊗ · · · ⊗ IN, (3.11)

with

β(±) = 1
2 [I ± β]. (3.12)

Moreover, we define

Æ̂(±)
⊥ = ß̂(±)Æ̂⊥, (3.13)

where Æ̂⊥ is a hypersurface integral operator with the kernel

Æ⊥(�, �′) = n(�) · Æ δ(3N−1)(� − �′) (3.14)

and δ(3N−1)(�−�′) is the Dirac delta function on the hypersurface S. (Some useful properties
of the operators Æ̂(±)

⊥ and ß̂(±) have been collected in appendix A.)

4. General properties of the energy eigenvalue E

From the defining equations (3.1) and (3.8) one may draw conclusions about the reality of the
energy eigenvalue E and about the dependence of the latter on the impedance parameter b.

To prove the reality of E, we observe that equation (3.1) implies

〈�|Ĥ�〉V − 〈Ĥ�|�〉V = [E − E∗]〈�|�〉V. (4.1)
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On the other hand, exploiting the 3N -dimensional Gauss integration theorem we have

〈�|Ĥ�〉V − 〈Ĥ�|�〉V = −ch̄(�|iÆ̂⊥�)S (4.2)

and further, after transforming the right-hand side of equation (4.2) with the aid of
equation (A.1) and the first of equations (A.6),

〈�|Ĥ�〉V − 〈Ĥ�|�〉V = −ch̄
(
�

∣∣iÆ̂(±)
⊥ �

)
S

+ ch̄
(
iÆ̂(±)

⊥ �
∣∣�)

S
. (4.3)

Applying the boundary condition (3.8) to the right-hand side of equation (4.3), making use of
the reality of b and of the second of equations (A.6), we arrive at

〈�|Ĥ�〉V − 〈Ĥ�|�〉V = 0. (4.4)

Combining equations (4.1) and (4.4), we conclude that the energy eigenvalue E is real.
To investigate the dependence of E on b, we differentiate the Dirac equation (3.1) with

respect to b±1. After rearrangement, this yields

∂E

∂b±1
�(r) = [Ĥ − E]

∂�(r)

∂b±1
(r ∈ V), (4.5)

hence, one has

∂E

∂b±1
〈�|�〉V =

〈
�

∣∣∣∣[Ĥ − E]
∂�

∂b±1

〉
V

. (4.6)

Next, transforming the right-hand side of equation (4.6) with the aid of the 3N -dimensional
Gauss integration theorem and exploiting the reality of E gives

∂E

∂b±1
〈�|�〉V =

〈
[Ĥ − E]�

∣∣∣∣ ∂�

∂b±1

〉
V

− ch̄

(
�

∣∣∣∣iÆ̂⊥
∂�

∂b±1

)
S

, (4.7)

which, in virtue of equation (3.1), simplifies to

∂E

∂b±1
〈�|�〉V = −ch̄

(
�

∣∣∣∣iÆ̂⊥
∂�

∂b±1

)
S

. (4.8)

Application of equation (A.1) and the first of equations (A.6) leads to

∂E

∂b±1
〈�|�〉V = −ch̄

(
�

∣∣∣∣iÆ̂(±)
⊥

∂�

∂b±1

)
S

+ ch̄

(
iÆ̂(±)

⊥ �

∣∣∣∣ ∂�

∂b±1

)
S

. (4.9)

Hence, after making use of the boundary condition (3.8) and of the second of equations (A.6),
we have

∂E

∂b±1
〈�|�〉V = −ch̄

(
�

∣∣∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

] ∂�

∂b±1

)
S

. (4.10)

Finally, after employing the relationship[
iÆ̂(±)

⊥ − γ (±)b±1ß̂(±)
]∂�(�)

∂b±1
= γ (±)ß̂(±)�(�) (� ∈ S), (4.11)

obtained after differentiating the boundary condition (3.8) with respect to b±1, we arrive at

∂E

∂b±1
= −ch̄γ (±) (�|ß̂(±)�)S

〈�|�〉V . (4.12)

Since the matrix element (�|ß̂(+)�)S is non-negative, invoking equation (3.9) one infers that

∂E

∂b
� 0, (4.13)

i.e., E is a non-increasing function of b.
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5. Construction of variational principles for the energy eigenvalue E

In this section, it will be our goal to construct, employing the recipe presented by Gerjuoy
et al [6], variational principles equivalent to the eigenproblem (3.1) and (3.8).

Following [6], we shall seek two functionals F (±) in the form

F (±)[E,�;�(±), λ(±)] = E + 〈�(±)|[Ĥ − E]�〉V +
(
λ(±)

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

,

(5.1)

where E is a trial eigenenergy, �(r) is a trial eigenfunction, while �(±)(r) and λ(±)(�) are
Lagrange functions, undetermined at this stage, introduced to incorporate equations (3.1) and
(3.8) as constraints. The functionals (5.1) possess the property

F (±)[E,�;�(±), λ(±)] = E (5.2)

for any choices of �(±)(r) and λ(±)(�).
The first variations of F (±), due to variations in E,�(r), �(±)(r) and λ(±)(�) around E,

�(r), �(±)(r) and λ(±)(�), respectively, where �(±)(r) and λ(±)(�) are some, so far arbitrary,
functions, are

δF (±)[E,�;�(±), λ(±)] = δE + 〈δ�(±)|[Ĥ − E]�〉V − δE〈�(±)|�〉V
+ 〈�(±)|[Ĥ − E]δ�〉V +

(
δλ(±)

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

+
(
λ(±)

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
δ�

)
S

. (5.3)

In virtue of equations (3.1) and (3.8), the second and the fifth terms on the right-hand side of
equation (5.3) vanish. Next, employing the 3N -dimensional Gauss integration theorem in the
fourth term on the right-hand side of equation (5.3) yields

δF (±)[E,�;�(±), λ(±)] = δE[1 − 〈�(±)|�〉V] + 〈[Ĥ − E]�(±)|δ�〉V
− (�(±)|ich̄Æ̂⊥δ�)S +

(
λ(±)

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
δ�

)
S

. (5.4)

Since the operators Æ̂(±)
⊥ and ß̂(±) possess the properties (A.6) and since b is real,

equation (5.4) may be rewritten in the form

δF (±)[E,�;�(±), λ(±)] = δE[1 − 〈�(±)|�〉V] + 〈[Ĥ − E]�(±)|δ�〉V
+

(
ich̄Æ̂⊥�(±) +

[−iÆ̂(∓)
⊥ − γ (±)b±1ß̂(±)

]
λ(±)

∣∣δ�)
S

. (5.5)

We shall choose the functions �(±)(r) and λ(±)(�) so that

δF (±)[E,�;�(±), λ(±)] = 0. (5.6)

It is evident from equation (5.5) that this stationarity condition will be satisfied if �(±)(r) and
λ(±)(�) are such that

1 − 〈�(±)|�〉V = 0, (5.7)

[Ĥ − E]�(±)(r) = 0 (r ∈ V), (5.8)

ich̄Æ̂⊥�(±)(�) − iÆ̂(∓)
⊥ λ(±)(�) − γ (±)b±1ß̂(±)λ(±)(�) = 0 (� ∈ S). (5.9)

Operating on equation (5.9) from the left either with ß̂(±) or with ß̂(∓), and then making use of
equations (A.2)–(A.5) yields

ich̄Æ̂(±)
⊥ �(±)(�) − γ (±)b±1ß̂(±)λ(±)(�) = 0 (� ∈ S) (5.10)

or

ich̄Æ̂(∓)
⊥ �(±)(�) − iÆ̂(∓)

⊥ λ(±)(�) = 0 (� ∈ S), (5.11)
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respectively. Acting then on equation (5.11) from the left with Æ̂(±)
⊥ and employing

equation (A.3), we find

ß̂(±)λ(±)(�) = ch̄ß̂(±)�(±)(�) (� ∈ S). (5.12)

Inserting equation (5.12) into equation (5.10) gives

iÆ̂(±)
⊥ �(±)(�) − γ (±)b±1ß̂(±)�(±)(�) = 0 (� ∈ S). (5.13)

From equations (5.8) and (5.13), it is evident that the functions �(±)(r) satisfy the same Dirac
equation in V and the same boundary condition on S as �(r). Hence, it follows that we may
choose

�(±)(r) = η(±)�(r) (r ∈ V), (5.14)

where η(±) are some complex numbers. To determine η(±), we substitute equation (5.14) into
equation (5.9), which gives

η(±) = 1

〈�|�〉V . (5.15)

From this and from equations (5.14) and (5.12) we obtain the following relationships:

�(±)(r) = 1

〈�|�〉V �(r) (r ∈ V), (5.16)

ß̂(±)λ(±)(�) = ch̄

〈�|�〉V ß̂(±)�(�) (� ∈ S). (5.17)

Equations (5.16) and (5.17) suggest the following choices of the trial Lagrange functions
�(±)(r) and λ(±)(�) in the starting functional (5.1):

�(±)(r) = 1

〈�|�〉V
�(r) (r ∈ V), (5.18)

ß̂(±)λ(±)(�) = ch̄

〈�|�〉V
ß̂(±)�(�) (� ∈ S). (5.19)

Taking then into account that(
λ(±)

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

= (
ß̂(±)λ(±)

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

(5.20)

and employing relations (A.2) and (A.5), we arrive at the functionals

F (±)[�] = 〈�|Ĥ�〉V
〈�|�〉V

+ ch̄

(
�

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

〈�|�〉V
. (5.21)

From equations (5.21), (5.6) and (5.2) we have the variational principles

δF (±)[�] = 0 E = F (±)[�], (5.22)

equivalent to the eigenproblem (3.1) and (3.8).
The functionals (5.21) possess the useful property of assuming real values for an arbitrary

trial function �(r). Indeed, with the aid of the 3N -dimensional Gauss integration theorem
the complex conjugate of equation (5.21),

F (±)∗[�] = 〈Ĥ�|�〉V
〈�|�〉V

+ ch̄

([
iÆ̂(±)

⊥ − γ (±)b±1ß̂(±)
]
�

∣∣� )
S

〈�|�〉V
, (5.23)
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may be transformed to the form

F (±)∗[�] = 〈�|Ĥ�〉V
〈�|�〉V

+ ch̄
(�|iÆ̂⊥�S) +

([
iÆ̂(±)

⊥ − γ (±)b±1ß̂(±)
]
�

∣∣� )
S

〈�|�〉V
. (5.24)

Further, from the fact that b is real and from equations (A.6) one has([
iÆ̂(±)

⊥ − γ (±)b±1ß̂(±)
]
�

∣∣� )
S

= (
�

∣∣[−iÆ̂(∓)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

. (5.25)

Substituting this into equation (5.24) and employing relation (A.1), we find that the right-hand
side of the resulting equation is identical with the right-hand side of equation (5.21), which
implies that F (±)[�] are real.

Above, in the considerations leading to the functionals (5.21), we have not assumed
normalization of the exact eigenfunction �(r). If, however, we impose the constraint

〈�|�〉V − 1 = 0, (5.26)

equations (5.16) and (5.17) become

�(±)(r) = �(r) (r ∈ V) (5.27)

and

ß̂(±)λ(±)(�) = ch̄ß̂(±)�(�) (� ∈ S), (5.28)

respectively. If we choose �(±)(r) and λ(±)(�) to be related to �(r) and �(�) in the analogous
way, i.e.,

�(±)(r) = �(r) (r ∈ V), (5.29)

ß̂(±)λ(±)(�) = ch̄ß̂(±)�(�) (� ∈ S), (5.30)

then, instead of the functionals (5.21), we get

F (±)[E,� ] = 〈�|Ĥ�〉V + ch̄
(
�

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�

)
S

+ E[1 − 〈�|�〉V]. (5.31)

(We emphasize that, despite constraint (5.26), analogous normalization of �(r) is not
required.) From equations (5.31), (5.6) and (5.2) we have the variational principles

δF (±)[E,�] = 0, E = F (±)[E,�], (5.32)

equivalent to the eigenproblem (3.1) and (3.8), provided eigenfunctions of this eigenproblem
are normalized to unity. A reasoning, analogous to that presented above for the functionals
(5.21), may be carried out to show that the functionals (5.31) are real for arbitrary trial functions
provided the estimate E is real.

Two remarks are in order here. First, the functionals (5.21) and (5.31) differ from those
used for unconfined systems in that the latter do not contain terms with hypersurface integrals
over S. In general, in the functionals (5.21) and (5.31) the surface terms will vanish only if
the trial function �(r) is constrained to obey the boundary condition (3.8). Second, it should
be emphasized that although the functionals F (+)[�] and F (−)[�] have the same stationary
values (which are energy eigenvalues of the eigensystem (3.1) and (3.8)), they differ one from
the other and for an arbitrary �(r) one has, in general, F (+)[�] �= F (−)[�]. The second
remark applies to the pair of the functionals F (±)[E,�] as well.

For the purposes of this work, the variational principles (5.31) are more suitable than
(5.21). In the next section we shall use their modified versions to determine approximate
solutions to the eigensystem (3.1) and (3.8).
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6. The Dirac–Hartree–Fock method for confined systems

In this section, we shall use the Dirac–Hartree–Fock (DHF) approach to find approximations
to eigensolutions of the system (3.1) and (3.8). To this end, we shall approximate the
eigenfunction �(r) by Slater determinants

�(±)
DHF (r) = 1√

N !

N∑
k1=1

· · ·
N∑

kN=1

εk1···kN
ψ

(±)
k1

(r1) ⊗ · · · ⊗ ψ
(±)
kN

(rN) (r ∈ V) (6.1)

(εk1···kN
is the Levi-Civita completely antisymmetric symbol), built of one-electron four-

component spinors
{
ψ

(±)
k (r)

}
, which are orthonormal in the sense of〈

ψ
(±)
k

∣∣ψ(±)
k′

〉 = δkk′ . (6.2)

The orthonormality conditions (6.2) imply〈
�(±)

DHF

∣∣�(±)
DHF

〉
V

= 1. (6.3)

To determine the optimal forms of
{
ψ

(±)
k (r)

}
, denoted hereafter as

{
ψ

(±)
k (r)

}
, and to find the

optimal estimates E
(±)
DHF of E, we shall employ the variational principles

δF (±)
DHF

[{
ψ

(±)
k

}
,
{
ε

(±)
kk′

}] = 0, E(±)
DHF = F (±)

DHF

[{
ψ

(±)
k

}
,
{
ε

(±)
kk′

}]
, (6.4)

with the functionals

F (±)
DHF

[{
ψ

(±)
k

}
,
{
ε

(±)
kk′

}] = 〈
�(±)

DHF

∣∣Ĥ�(±)
DHF

〉
V

+ ch̄
(
�(±)

DHF

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�(±)

DHF

)
S

+
N∑

k,k′=1

ε
(±)
k′k

[
δkk′ − 〈

ψ
(±)
k

∣∣ψ(±)
k′

〉]
. (6.5)

These functionals are formally obtained from the functionals (5.31) by employing
equation (6.3) and introducing the term containing the Lagrange multipliers

{
ε

(±)
kk′

}
,

incorporating the orthonormality constraints (6.2). The optimal multipliers
{
ε

(±)
kk′

}
have to

be determined simultaneously with
{
ψ

(±)
k (r)

}
.

It should be emphasized that since the two functionals F (±)
DHF defined in equation (6.5)

differ, at this stage one has to admit the possibility that the extremalization of F (+)
DHF may yield

the spin orbitals
{
ψ

(+)
k (r)

}
, the Lagrange multipliers

{
ε

(+)
kk′

}
and the approximate total energy

eigenvalue E
(+)
DHF differing from

{
ψ

(−)
k (r)

}
,
{
ε

(−)
kk′

}
and E

(−)
DHF obtained from the extremalization

of F (−)
DHF . We shall return to this point later in this section.
Standard manipulations with determinantal functions yield

〈
�(±)

DHF

∣∣Ĥ�(±)
DHF

〉
V

=
N∑

k=1

〈
ψ

(±)
k

∣∣Ĥψ
(±)
k

〉
+

1

2

N∑
k,k′=1

〈〈
ψ

(±)
k ψ

(±)
k′

∣∣U [1 − P̂ kk′]ψ(±)
k ψ

(±)
k′

〉〉
, (6.6)

where

Ĥ = −ich̄α · ∇ + βmc2 + V (r), (6.7)

〈〈
ψ(±)

a ψ
(±)
b

∣∣Uψ(±)
c ψ

(±)
d

〉〉 =
∫
V

d3r

∫
V

d3r′ ψ(±)†
a (r) ⊗ ψ

(±)†
b (r′)U(r, r′)ψ(±)

c (r) ⊗ ψ
(±)
d (r′),

(6.8)

and P̂ kk′ is the operator interchanging the indices k and k′. Further, the reasoning
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presented in appendix C gives

(
�(±)

DHF

∣∣[iÆ̂(±)
⊥ − γ (±)b±1ß̂(±)

]
�(±)

DHF

)
S

=
N∑

k=1

(
ψ

(±)
k

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
ψ

(±)
k

)
, (6.9)

where

α
(±)
⊥ (ρ) = n(ρ) · β(±)α. (6.10)

This allows us to express the functionals (6.5) explicitly in terms of the spin orbitals
{
ψ

(±)
k (r)

}
:

F (±)
DHF

[{
ψ

(±)
k

}
,
{
ε

(±)
kk′

}] =
N∑

k=1

〈
ψ

(±)
k

∣∣Ĥψ
(±)
k

〉
+ ch̄

N∑
k=1

(
ψ

(±)
k

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
ψ

(±)
k

)

+
1

2

N∑
k,k′=1

〈〈
ψ

(±)
k ψ

(±)
k′

∣∣U [1 − P̂ kk′]ψ(±)
k ψ

(±)
k′

〉〉
+

N∑
k,k′=1

ε
(±)
k′k

[
δkk′ − 〈

ψ
(±)
k

∣∣ψ(±)
k′

〉]
.

(6.11)

The first variations of the functionals (6.11) due to variations in
{
ψ

(±)
k (r)

}
,
{
ψ

(±)
k (ρ)

}
and{

ε
(±)
kk′

}
around

{
ψ

(±)
k (r)

}
,
{
ψ

(±)
k (ρ)

}
and

{
ε

(±)
kk′

}
, respectively, are

δF (±)
DHF

[{
ψ

(±)
k

}
,
{
ε

(±)
kk′

}] =
N∑

k=1

〈
δψ

(±)
k

∣∣Ĥψ
(±)
k

〉
+

N∑
k=1

〈
ψ

(±)
k

∣∣Ĥ δψ
(±)
k

〉

+ ch̄

N∑
k=1

(
δψ

(±)
k

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
ψ

(±)
k

)

+ ch̄

N∑
k=1

(
ψ

(±)
k

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
δψ

(±)
k

)

+
N∑

k,k′=1

〈〈
δψ

(±)
k ψ

(±)
k′

∣∣U [1 − P̂ kk′]ψ(±)
k ψ

(±)
k′

〉〉

+
N∑

k,k′=1

〈〈
ψ

(±)
k ψ

(±)
k′

∣∣U [1 − P̂ kk′]δψ(±)
k ψ

(±)
k′

〉〉

+
N∑

k,k′=1

δε
(±)
k′k

[
δkk′ − 〈

ψ
(±)
k

∣∣ψ(±)
k′

〉]

−
N∑

k,k′=1

ε
(±)
k′k

[〈
δψ

(±)
k

∣∣ψ(±)
k′

〉
+

〈
ψ

(±)
k

∣∣δψ(±)
k′

〉]
. (6.12)

Since

α
(±)†
⊥ (ρ) = α

(∓)
⊥ (ρ), β(±)† = β(±), (6.13)

we have(
ψ

(±)
k

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
δψ

(±)
k

) = ([ − iα(∓)
⊥ − γ (±)b±1β(±)

]
ψ

(±)
k

∣∣δψ(±)
k

)
. (6.14)

Further, on applying the three-dimensional Gauss integration theorem, we have〈
ψ

(±)
k

∣∣Ĥ δψ
(±)
k

〉 = 〈
Ĥψ

(±)
k

∣∣δψ(±)
k

〉
+ ch̄

(
iα⊥ψ

(±)
k

∣∣δψ(±)
k

)
, (6.15)
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where

α⊥(ρ) = n(ρ) · α. (6.16)

Combining equations (6.14) and (6.15) with the relationship

α⊥(ρ) = α
(±)
⊥ (ρ) + α

(∓)
⊥ (ρ), (6.17)

transforms equation (6.12) to the following more suitable form:

δF (±)
DHF

[{
ψ

(±)
k

}
,
{
ε

(±)
kk′

}] =
N∑

k=1

〈
δψ

(±)
k

∣∣∣∣∣F̂ (±)ψ
(±)
k −

N∑
k′=1

ε
(±)
k′k ψ

(±)
k′

〉

+ ch̄

N∑
k=1

(
δψ

(±)
k

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
ψ

(±)
k

)

+
N∑

k=1

〈
F̂ (±)ψ

(±)
k −

N∑
k′=1

ε
(±)∗
kk′ ψ

(±)
k′

∣∣∣∣∣ δψ(±)
k

〉

+ ch̄

N∑
k=1

([
iα(±)

⊥ − γ (±)b±1β(±)
]
ψ

(±)
k

∣∣δψ(±)
k

)

+
N∑

k,k′=1

δε
(±)
k′k

[
δkk′ − 〈

ψ
(±)
k

∣∣ψ(±)
k′

〉]
, (6.18)

with the DHF operators defined as

F̂ (±) = Ĥ +
N∑

k=1

[〈
ψ

(±)
k

∣∣Uψ
(±)
k

〉 − ∣∣ψ(±)
k

〉
U

〈
ψ

(±)
k

∣∣]. (6.19)

The stationarity condition for F (±)
DHF , imposed in equation (6.4), will be satisfied if in

equation (6.18) the terms multiplying
{
δψ

(±)†
k (r)

}
,
{
δψ

(±)
k (r)

}
,
{
δψ

(±)†
k (ρ)

}
,
{
δψ

(±)
k (ρ)

}
and{

δε
(±)
k′k

}
vanish separately. On equating to zero terms multiplying

{
δψ

(±)†
k (r)

}
and

{
δψ

(±)
k (r)

}
in the volume integrals in equation (6.8), we obtain the DHF equations

F̂ (±)ψ
(±)
k (r) −

N∑
k′=1

ε
(±)
k′k ψ

(±)
k′ (r) = 0 (r ∈ V) (6.20)

and

F̂ (±)ψ
(±)
k (r) −

N∑
k′=1

ε
(±)∗
kk′ ψ

(±)
k′ (r) = 0 (r ∈ V), (6.21)

respectively. Further, equating to zero terms multiplying
{
δψ

(±)†
k (ρ)

}
and

{
δψ

(±)
k (ρ)

}
in the

surface integrals in equation (6.18) yields in both cases the same boundary conditions[
iα(±)

⊥ (ρ) − γ (±)b±1β(±)
]
ψ

(±)
k (ρ) = 0 (ρ ∈ S). (6.22)

Finally, equating to zero terms at
{
δε

(±)
k′k

}
gives the orthonormality constraints〈

ψ
(±)
k

∣∣ψ(±)
k′

〉 = δkk′, (6.23)

in agreement with equation (6.2).
Several important results may be drawn from equations (6.20)–(6.23). First, projecting

equations (6.20) and (6.21) onto ψ
(±)
k′′ (r), exploiting equation (6.23) and replacing then k′′

with k′, we obtain

ε
(±)
k′k = ε

(±)∗
kk′ , (6.24)
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i.e., the matrices of the Lagrange multipliers are Hermitian. Second, it is not difficult to verify
that the DHF equations (6.20) and the boundary conditions (6.22) are invariant with respect
to unitary transformations among the orbitals

{
ψ

(±)
k (r)

}
, in particular with respect to these

transformations which diagonalize the Hermitian matrices of
{
ε

(±)
k′k

}
. Therefore, it is always

possible, and desirable, to transform the DHF equations (6.20) to the simpler forms[
F̂ (±) − ε

(±)
k

]
ψ

(±)
k (r) = 0 (r ∈ V), (6.25)

with
{
ε

(±)
k

}
real. Third, seemingly the DHF equations (6.25) and the boundary conditions

(6.22) constitute two eigensystems: one for
{
ψ

(+)
k , ε

(+)
k

}
and the second for

{
ψ

(−)
k , ε

(−)
k

}
.

However, acting on equation (6.22) from the left with the operator γ (∓)b∓1iα(∓)
⊥ (ρ) and

making use of equation (3.9) as well as of the properties

α
(∓)
⊥ (ρ)α

(±)
⊥ (ρ) = β(∓), α

(∓)
⊥ (ρ)β(±) = α

(∓)
⊥ (ρ), (6.26)

we obtain [
iα(∓)

⊥ (ρ) − γ (∓)b∓1β(∓)
]
ψ

(±)
k (ρ) = 0 (ρ ∈ S). (6.27)

A glance at equation (6.25) and comparison of equations (6.22) and (6.27) show that the
eigensystems obeyed by

{
ψ

(+)
k , ε

(+)
k

}
and

{
ψ

(−)
k , ε

(−)
k

}
are identical, so that these two sets

must be the same. Consequently, the superscripts at
{
ψ

(±)
k

}
and

{
ε

(±)
k

}
are redundant and may

be omitted. (Observe that this was by no means obvious at the beginning of this section!)
Recapitulating, we have shown that in the DHF approach the orthonormal spin orbitals

{ψk(r)}, defining the best determinantal approximation �DHF(r) to the eigenfunction �(r) of
the system (3.1) and (3.8), are solutions to the finite-volume DHF integro-differential system

Ĥψk(r) +
N∑

k′=1

〈ψk′ |U [1 − P̂ kk′]ψk′ 〉ψk(r) − εkψk(r) = 0 (r ∈ V) (6.28)

augmented by the boundary conditions[
iα(±)

⊥ (ρ) − γ (±)b±1β(±)
]
ψk(ρ) = 0 (ρ ∈ S) (6.29)

(the superscripts may be chosen arbitrarily).
It remains to evaluate the DHF total energies

E(±)
DHF = F (±)

DHF [{ψk}, {εk}]. (6.30)

In virtue of equation (6.11), we have

E(±)
DHF =

N∑
k=1

〈ψk|Ĥψk〉 + ch̄

N∑
k=1

(
ψk

∣∣[iα(±)
⊥ − γ (±)b±1β(±)

]
ψk

)

+
1

2

N∑
k,k′=1

〈〈ψkψk′ |U [1 − P̂ kk′]ψkψk′ 〉〉. (6.31)

Invoking the boundary condition (6.29), we see that the surface terms do not contribute to
E

(±)
DHF . This implies that

E(+)
DHF = E(−)

DHF = EDHF, (6.32)

where, as follows from equations (6.31) and (6.28),

EDHF =
N∑

k=1

εk − 1

2

N∑
k,k′=1

〈〈ψkψk′ |U [1 − P̂ kk′]ψkψk′ 〉〉. (6.33)

Evidently, estimate (6.33) is real.
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7. Dependence of the DHF total energy EDHF on b

In section 4 we have shown that energy eigenvalues of the spectral problem (3.1) and (3.8) are
non-increasing functions of the impedance parameter b. It is remarkable that the DHF energy
estimates EDHF depend on b in the same manner.

To prove this fact, we differentiate equation (6.33) with respect to b±1, obtaining

∂EDHF

∂b±1
=

N∑
k=1

∂εk

∂b±1
−

N∑
k,k′=1

〈〈
∂ψk

∂b±1
ψk′

∣∣∣∣U [1 − P̂ kk′]ψkψk′

〉〉

−
N∑

k,k′=1

〈〈
ψkψk′

∣∣∣∣U [1 − P̂ kk′]
∂ψk

∂b±1
ψk′

〉〉
. (7.1)

On the other hand, differentiating the DHF equations (6.28) with respect to b±1, projecting
the result onto ψk(r), and summing over k, we find

N∑
k=1

〈
ψk

∣∣∣∣Ĥ ∂ψk

∂b±1

〉
+

N∑
k,k′=1

〈〈
∂ψk

∂b±1
ψk′

∣∣∣∣U [1 − P̂ kk′]ψkψk′

〉〉

+ 2
N∑

k,k′=1

〈〈
ψkψk′

∣∣∣∣U [1 − P̂ kk′]
∂ψk

∂b±1
ψk′

〉〉

−
N∑

k=1

∂εk

∂b±1
−

N∑
k=1

εk

〈
ψk

∣∣∣∣ ∂ψk

∂b±1

〉
= 0. (7.2)

Further, application of the three-dimensional Gauss integration theorem gives〈
ψk

∣∣∣∣Ĥ ∂ψk

∂b±1

〉
=

〈
Ĥψk

∣∣∣∣ ∂ψk

∂b±1

〉
− ch̄

(
ψk

∣∣∣∣iα⊥
∂ψk

∂b±1

)
. (7.3)

Inserting this into equation (7.2) and exploiting the DHF equations (6.28), after some
rearrangement we arrive at

N∑
k=1

∂εk

∂b±1
−

N∑
k,k′=1

〈〈
∂ψk

∂b±1
ψk′

∣∣∣∣U [1 − P̂ kk′]ψkψk′

〉〉

−
N∑

k,k′=1

〈〈
ψkψk′

∣∣∣∣U [1 − P̂ kk′]
∂ψk

∂b±1
ψk′

〉〉
= −ch̄

N∑
k=1

(
ψk

∣∣∣∣iα⊥
∂ψk

∂b±1

)
. (7.4)

Combining equations (7.1) and (7.4) leads to

∂EDHF

∂b±1
= −ch̄

N∑
k=1

(
ψk

∣∣∣∣iα⊥
∂ψk

∂b±1

)
. (7.5)

The right-hand side of equation (7.5) may be further transformed with the aid of equation (6.17)
and the first relation in equation (6.13). This yields

∂EDHF

∂b±1
= −ch̄

N∑
k=1

(
ψk

∣∣∣∣iα(±)
⊥

∂ψk

∂b±1

)
+ ch̄

N∑
k=1

(
iα(±)

⊥ ψk

∣∣∣∣ ∂ψk

∂b±1

)
. (7.6)

Next, exploiting the boundary condition (6.29) in the second sum on the right-hand side of
equation (7.6) and utilizing the Hermiticity of β(±), we find

∂EDHF

∂b±1
= −ch̄

N∑
k=1

(
ψk

∣∣∣∣[iα(±)
⊥ − γ (±)b±1β(±)

] ∂ψk

∂b±1

)
. (7.7)
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In the last step, we make use of the relationship[
iα(±)

⊥ (ρ) − γ (±)b±1β(±)
]∂ψk(ρ)

∂b±1
= γ (±)β(±)ψk(ρ) (ρ ∈ S), (7.8)

resulting from differentiating the boundary condition (6.29) with respect to b±1. This gives

∂EDHF

∂b±1
= −ch̄γ (±)

N∑
k=1

(ψk|β(±)ψk) (7.9)

(cf equation (4.12)). Since γ (+) is positive and the matrix elements {(ψk|β(+)ψk)} are non-
negative, from equation (7.9) we infer that

∂EDHF

∂b
� 0 (7.10)

(cf equation (4.13)). This completes the proof of the statement made at the beginning of this
section.

8. Conclusions

In this paper, we have considered stationary states of a relativistic N-electron system confined
to an interior of the three-dimensional volume V . The confinement has been modelled
mathematically by imposing on solutions to the N-electron Dirac equation (3.1) the local
impedance boundary condition (3.8) at the hypersurface enclosing the hypervolume VN . We
have proved that energy eigenvalues of the resulting spectral problem are non-increasing
functions of the impedance parameter appearing in the boundary condition. Next, we
have discussed the possibility of exploiting the determinantal Slater functions (6.1) in the
variational search for estimates of energy eigenvalues of the spectral problem (3.1) and (3.8).
The functions (6.1), built of orthonormal one-electron spin orbitals, have been used in two
variational principles (6.4), (6.5), obtained after modifying suitably the basic variational
principles (5.31), (5.32) for energy eigenvalues of the confined system. In both cases, this
resulted in the same finite-volume DHF eigensystem, constituted by the integro-differential
equations (6.28) and the impedance boundary conditions (6.29), satisfied by the optimal spin
orbitals. Finally, we have proved that the DHF estimates (6.33) of the exact energy eigenvalues
retain the property of the latter of being non-increasing functions of the impedance parameter.
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Appendix A. Some properties of the operators Æ̂(±)
⊥ and ß̂(±)

It may be inferred from definitions (3.10)–(3.14) and from the well-known properties of the
Dirac matrices α and β [7] that the operators Æ̂(±)

⊥ and ß̂(±) obey

Æ̂(+)
⊥ + Æ̂(−)

⊥ = Æ̂⊥, (A.1)

ß̂(±)ß̂(±) = ß̂(±), ß̂(±)ß̂(∓) = 0, (A.2)

Æ̂(±)
⊥ Æ̂(±)

⊥ = 0, Æ̂(±)
⊥ Æ̂(∓)

⊥ = ß̂(±), (A.3)

Æ̂(±)
⊥ ß̂(±) = 0, Æ̂(±)

⊥ ß̂(∓) = Æ̂(±)
⊥ , (A.4)

ß̂(±)Æ̂(±)
⊥ = Æ̂(±)

⊥ , ß̂(±)Æ̂(∓)
⊥ = 0. (A.5)
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Moreover, for any two sufficiently regular 4N -component spinor functions �(�) and �′(�) it
holds (

�
∣∣Æ̂(±)

⊥ �′)
S

= (
Æ̂(∓)

⊥ �
∣∣�′)

S
,

(
�

∣∣ß̂(±)�′)
S

= (
ß̂(±)�

∣∣�′)
S

. (A.6)

Appendix B. Equivalence of boundary conditions in equation (3.8)

Consider the boundary condition corresponding to the choice of the upper superscripts in
equation (3.8):[

iÆ̂(+)
⊥ − γ (+)bß̂(+)

]
�(�) = 0 (� ∈ S). (B.1)

Operating on equation (A.1) from the left with −γ (−)b−1iÆ̂(−)
⊥ and making use of

equations (3.9), (A.3) and (A.4), transforms equation (B.1) into[
iÆ̂(−)

⊥ − γ (−)b−1ß̂(−)
]
�(�) = 0 (� ∈ S). (B.2)

Hence, it follows that superscripts in equation (3.8) may be chosen arbitrarily.

Appendix C. Derivation of equation (6.9)

Consider the matrix element
(
�

(±)
DHF

∣∣ß̂(±)�
(±)
DHF

)
S

. Since

�(±)
DHF (�K) = 1√

N !

N∑
k1=1

· · ·
N∑

kN=1

εk1···kN
ψ

(±)
k1

(r1) ⊗ · · · ⊗ ψ
(±)
kK−1

(rK−1) ⊗ ψ
(±)
kK

(ρK)

⊗ψ
(±)
kK+1

(rK+1) ⊗ · · · ⊗ ψ
(±)
kN

(rN) (�K ∈ SK), (C.1)

after employing equations (3.10) and (3.11), we have

(
�(±)

DHF

∣∣ß̂(±)�(±)
DHF

)
S

= 1

N !

N∑
K=1

N∑
k1=1

· · ·
N∑

kN=1

N∑
k′

1=1

· · ·
N∑

k′
N=1

εk1···kN
εk′

1···k′
N

× 〈
ψ

(±)
k1

∣∣ψ(±)

k′
1

〉 · · · 〈ψ(±)
kK−1

∣∣ψ(±)

k′
K−1

〉(
ψ

(±)
kK

∣∣β(±)ψ
(±)

k′
K

)
× 〈

ψ
(±)
kK+1

∣∣ψ(±)

k′
K+1

〉 · · · 〈ψ(±)
kN

∣∣ψ(±)

k′
N

〉
. (C.2)

Exploiting then the orthonormality constraint (6.2), and also making use of the summation
formula

N∑
k1=1

· · ·
N∑

kK−1=1

N∑
kK+1=1

· · ·
N∑

kN=1

εk1···kK−1kKkK+1···kN
εk1···kK−1k

′
KkK+1···kN

= (N − 1)!δkKk′
K
, (C.3)

we arrive at (
�(±)

DHF

∣∣ß̂(±)�(±)
DHF

)
S

= 1

N

N∑
K=1

N∑
kK=1

(
ψ

(±)
kK

∣∣β(±)ψ
(±)
kK

)
, (C.4)

hence, it follows immediately that

(
�(±)

DHF

∣∣ß̂(±)�(±)
DHF

)
S

=
N∑

k=1

(
ψ

(±)
k

∣∣β(±)ψ
(±)
k

)
. (C.5)

In the completely analogous way one shows that

(
�(±)

DHF

∣∣iÆ̂(±)
⊥ �(±)

DHF

)
S

=
N∑

k=1

(
ψ

(±)
k

∣∣iα(±)
⊥ ψ

(±)
k

)
. (C.6)

Equation (6.9) results from equations (C.6) and (C.5).



7798 M Gruchowski and R Szmytkowski

References

[1] Jaskólski W 1996 Phys. Rep. 271 1
[2] Connerade J P and Semaoune R 2000 J. Phys. B: At. Mol. Opt. Phys. 33 869
[3] Connerade J P and Semaoune R 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3467
[4] Connerade J P, Kengkan P, Lakshmi P A and Semaoune R 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L847
[5] Connerade J P, Kengkan P and Semaoune R 2001 J. Chin. Chem. Soc. (Taipei) 48 265
[6] Gerjuoy E, Rau A R P and Spruch L 1983 Rev. Mod. Phys. 55 725
[7] Schiff L I 1968 Quantum Mechanics 3rd edn (New York: McGraw-Hill)


